Scrivendo il Corso on line di Statistica di Studiamo.it mi sono accorto che non c’è in Rete una tavola fatta bene delle aree della distribuzione normale standardizzata.
Manca cioè una tabella completa dei valori dell’area tratteggiata in figura:
Ovvero i valori dell’area compresa tra – λ e + λ riferiti alla seguente funzione:
In altre parole la tavola sotto riprodotta contiene le percentuali dell’area compresa tra – λ e + λ, in corrispondenza dell’incrocio di ogni grandezza di λ (sulle righe) con i suoi centesimi (in colonna).
Più precisamente, ciascuna percentuale esprime in statistica il livello di significatività del valore tabulato della variabile normale standardizzata ottenuto dall’incrocio di riga e colonna.
Aree della Distribuzione Normale Standardizzata (download del file pdf)
λ |
0,00 |
0,01 |
0,02 |
0,03 |
0,04 |
0,05 |
0,06 |
0,07 |
0,08 |
0,09 |
0,00 |
0,000% |
0,798% |
1,596% |
2,393% |
3,191% |
3,988% |
4,784% |
5,581% |
6,376% |
7,171% |
0,10 |
7,966% |
8,759% |
9,552% |
10,343% |
11,134% |
11,924% |
12,712% |
13,499% |
14,285% |
15,069% |
0,20 |
15,852% |
16,633% |
17,413% |
18,191% |
18,967% |
19,741% |
20,514% |
21,284% |
22,052% |
22,818% |
0,30 |
23,582% |
24,344% |
25,103% |
25,860% |
26,614% |
27,366% |
28,115% |
28,862% |
29,605% |
30,346% |
0,40 |
31,084% |
31,819% |
32,551% |
33,280% |
34,006% |
34,729% |
35,448% |
36,164% |
36,877% |
37,587% |
0,50 |
38,292% |
38,995% |
39,694% |
40,389% |
41,080% |
41,768% |
42,452% |
43,132% |
43,809% |
44,481% |
0,60 |
45,149% |
45,814% |
46,474% |
47,131% |
47,783% |
48,431% |
49,075% |
49,714% |
50,350% |
50,981% |
0,70 |
51,607% |
52,230% |
52,848% |
53,461% |
54,070% |
54,675% |
55,275% |
55,870% |
56,461% |
57,047% |
0,80 |
57,629% |
58,206% |
58,778% |
59,346% |
59,909% |
60,467% |
61,021% |
61,570% |
62,114% |
62,653% |
0,90 |
63,188% |
63,718% |
64,243% |
64,763% |
65,278% |
65,789% |
66,294% |
66,795% |
67,291% |
67,783% |
1,00 |
68,269% |
68,750% |
69,227% |
69,699% |
70,166% |
70,628% |
71,086% |
71,538% |
71,986% |
72,429% |
1,10 |
72,867% |
73,300% |
73,729% |
74,152% |
74,571% |
74,986% |
75,395% |
75,800% |
76,200% |
76,595% |
1,20 |
76,986% |
77,372% |
77,754% |
78,130% |
78,502% |
78,870% |
79,233% |
79,592% |
79,945% |
80,295% |
1,30 |
80,640% |
80,980% |
81,316% |
81,648% |
81,975% |
82,298% |
82,617% |
82,931% |
83,241% |
83,547% |
1,40 |
83,849% |
84,146% |
84,439% |
84,728% |
85,013% |
85,294% |
85,571% |
85,844% |
86,113% |
86,378% |
1,50 |
86,639% |
86,896% |
87,149% |
87,398% |
87,644% |
87,886% |
88,124% |
88,358% |
88,589% |
88,817% |
1,60 |
89,040% |
89,260% |
89,477% |
89,690% |
89,899% |
90,106% |
90,309% |
90,508% |
90,704% |
90,897% |
1,70 |
91,087% |
91,273% |
91,457% |
91,637% |
91,814% |
91,988% |
92,159% |
92,327% |
92,492% |
92,655% |
1,80 |
92,814% |
92,970% |
93,124% |
93,275% |
93,423% |
93,569% |
93,711% |
93,852% |
93,989% |
94,124% |
1,90 |
94,257% |
94,387% |
94,514% |
94,639% |
94,762% |
94,882% |
95,000% |
95,116% |
95,230% |
95,341% |
2,00 |
95,450% |
95,557% |
95,662% |
95,764% |
95,865% |
95,964% |
96,060% |
96,155% |
96,247% |
96,338% |
2,10 |
96,427% |
96,514% |
96,599% |
96,683% |
96,765% |
96,844% |
96,923% |
96,999% |
97,074% |
97,148% |
2,20 |
97,219% |
97,289% |
97,358% |
97,425% |
97,491% |
97,555% |
97,618% |
97,679% |
97,739% |
97,798% |
2,30 |
97,855% |
97,911% |
97,966% |
98,019% |
98,072% |
98,123% |
98,173% |
98,221% |
98,269% |
98,315% |
2,40 |
98,360% |
98,405% |
98,448% |
98,490% |
98,531% |
98,571% |
98,611% |
98,649% |
98,686% |
98,723% |
2,50 |
98,758% |
98,793% |
98,826% |
98,859% |
98,891% |
98,923% |
98,953% |
98,983% |
99,012% |
99,040% |
2,60 |
99,068% |
99,095% |
99,121% |
99,146% |
99,171% |
99,195% |
99,219% |
99,241% |
99,264% |
99,285% |
2,70 |
99,307% |
99,327% |
99,347% |
99,367% |
99,386% |
99,404% |
99,422% |
99,439% |
99,456% |
99,473% |
2,80 |
99,489% |
99,505% |
99,520% |
99,535% |
99,549% |
99,563% |
99,576% |
99,590% |
99,602% |
99,615% |
2,90 |
99,627% |
99,639% |
99,650% |
99,661% |
99,672% |
99,682% |
99,692% |
99,702% |
99,712% |
99,721% |
3,00 |
99,730% |
99,739% |
99,747% |
99,755% |
99,763% |
99,771% |
99,779% |
99,786% |
99,793% |
99,800% |
3,10 |
99,806% |
99,813% |
99,819% |
99,825% |
99,831% |
99,837% |
99,842% |
99,848% |
99,853% |
99,858% |
3,20 |
99,863% |
99,867% |
99,872% |
99,876% |
99,880% |
99,885% |
99,889% |
99,892% |
99,896% |
99,900% |
3,30 |
99,903% |
99,907% |
99,910% |
99,913% |
99,916% |
99,919% |
99,922% |
99,925% |
99,928% |
99,930% |
3,40 |
99,933% |
99,935% |
99,937% |
99,940% |
99,942% |
99,944% |
99,946% |
99,948% |
99,950% |
99,952% |
3,50 |
99,953% |
99,955% |
99,957% |
99,958% |
99,960% |
99,961% |
99,963% |
99,964% |
99,966% |
99,967% |
3,60 |
99,968% |
99,969% |
99,971% |
99,972% |
99,973% |
99,974% |
99,975% |
99,976% |
99,977% |
99,978% |
3,70 |
99,978% |
99,979% |
99,980% |
99,981% |
99,982% |
99,982% |
99,983% |
99,984% |
99,984% |
99,985% |
3,80 |
99,986% |
99,986% |
99,987% |
99,987% |
99,988% |
99,988% |
99,989% |
99,989% |
99,990% |
99,990% |
3,90 |
99,990% |
99,991% |
99,991% |
99,992% |
99,992% |
99,992% |
99,993% |
99,993% |
99,993% |
99,993% |
4,00 |
99,994% |
99,994% |
99,994% |
99,994% |
99,995% |
99,995% |
99,995% |
99,995% |
99,995% |
99,996% |
4,10 |
99,996% |
99,996% |
99,996% |
99,996% |
99,997% |
99,997% |
99,997% |
99,997% |
99,997% |
99,997% |
4,20 |
99,997% |
99,997% |
99,998% |
99,998% |
99,998% |
99,998% |
99,998% |
99,998% |
99,998% |
99,998% |
4,30 |
99,998% |
99,998% |
99,998% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
4,40 |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
4,50 |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
99,999% |
100,00% |
100,00% |
100,00% |
4,60 |
100,00% |
100,00% |
100,00% |
100,00% |
100,00% |
100,00% |
100,00% |
100,00% |
100,00% |
100,00% |
0 commenti